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Convergence-Optimized, Higher Order Vector Finite
Elements for Microwave Simulations
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Abstract—We introduce a general class of higher order param- Il. GENERAL CLASS OFWHITNEY ELEMENTS

eter-dependent Whitney elements, unlike previous approaches that . . .
resulted in specific element definitions. All elements of this kind A- Basic Element and the Affine Transformation

provide the same solution, but their convergence propertiesmay be  The formation of the wide class of second-order Whitney el-

significantly different. The most essential fact, though, is the intro- o,y 0 o starts from the basic one, derived by a justified choice
duction of an optimization procedure, which reveals the existence

of an optimal, with respect to convergence, element. The produced ©f DOFs [3]. On each edgg, ), the two DOFs are
second order elements are tested in both two-dimensional (2-D)and

: : : : ; () (%)

three-dimensional (3-D) microwave simulations. ; 2 j 2

(3-D) Fi :/ F-tycd, F :/ F-t;Gdl (1)
Index Terms—Finite-element methods, modeling, waveguide (%) €)]

ts. . -, .
components while two additional DOFs are defined on each féacej, k)

Ejk:// FXﬁ+VCJdS

I. INTRODUCTION {i,5, k}
HE FINITE-element method (FEM) is a valuable tool Fij = / F x ™ -V ds. 2)
in computational electromagnetics and especially in

microwave analysis and design. However, most simulations of U, kY

this kind are still based on the well-known edge element [1This choice is not unique, although the kernels should follow the
although higher orders are highly desirable for better accurasgme patterns. A systematic procedure, based on a decoupling
Generalizations of this kind do exist, [2]-[7] and actually fornproperty and the correct geometric representation of the discrete
the basis of some widely used commercial packages. Howewd#,Rham sequence results in the following SF expressions
thanks to a recent comparative study of several second-order )

elements [7], it is clear that they exhibit significant differences, Wiy = (8¢ = 4G)VG + (=8GG +2G)VG @)

with respect to the_ convergence of the |terat|ye method _used to @fj = —16G:¢; VG + 8¢ GV G + 8GG V¢ (4)

solve the global finite element matrix equation. In particular,

the element [3] has slow convergence, compared to [2] and [fdr edge and face DOFs, respectively, both in 2-D and 3-D.
What we introduced in [3], though, was actually a systematic The essential concept here is to define an as general as pos-
approach to construct an infinite variety of second and thigible transformation of SFs, resulting in optimal convergence.
order Whitney elements. We also implied that these could Bnce it is unlikely to find this by heuristic trials, we pursue a
related to each other by an affine transformation. In this studyystematic analysis by introducing transformations of DOFs and
we formulate the most general transformation of degrees $Fs,

freedom (DOF) and shape functions (SF), thus defining an L L

element class, depending on nine parameters. By a proper F=MF, W =AW (5), (6)
optimization scheme, based on the elemental matrix and being, ) ) ]
therefore, efficient and easy to implement, we managed rgspectively, wher#' is the column vector of DOFs for a single
trace the optimal parameters, resulting in less than 30% of fi§MentE” the transformed ondy the column vector of vector

—; . .
iterations for the reference element [3]. This is demonstratef S @NdW' the new basis. MoreoveN and A are 8x 8 in
in both two dimensional (2-D) and three-dimensional (3- -D or 20x 20 in 3-D matrices, which are related to each other,

simulations. since the field expression is, in column vector form,
F=F'W = MF)"AW =F'M"AOW  (7)
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the transformed T-matrix in the rather unusual column vectol
product of the form

T = [1] = | (@, @) | = / wmldo= [ WW
e ‘ )
and apply (6), which results in

T = | AWWTAT dv = ATAT. (10)
Ve
The same relation holds for the S-matrix. The question is wha
prevents a so general transformation that could even nearly d
agonalize the matrix. The answer lies in the allocation of DOFs 3 )
and the tangential continuity property, dictating that (5) should
associate a DOF with thoskefined only on the same simplefig- 1. Links among the transformed and the original DOFs in a 2-D or a face
or its own subsimplicesThis means that (5) should link edgeOf a 3-D second order Whitney element [shown for DOFs (1) and (7) only].
DOFs with those on the same edge only, or a face DOF with all
face and edge DOFs of the same face. Hence, further links ¥f@ere
not possible.
Therefore, in 2-D, we introduce an M-matrix of the form

p=labedidaeies fi fQ]T

is the parameter vectos;;(p) the entries of the transformed
: : : A-matrix, and N; the number of degrees of freedom for a
......... PP single element. If (12) is minimized, the nondiagonal entries for
1 a : each row will be as low as possible, compared to the diagonal
M= . ... SN SO L (11) Slement . . . .
: - : The best results, though, are obtained by introducing a crite-
: : : rion, based on the eigenvaluas(p), ¢ = 1, ..., N, of the
--------- transformed A-matrix. Indeed, if we enforce that they are as
et di 1 dy o2t fi fo 1 b oc close to each other as possible, the matrix will be closer to a
Lf2 fi ¢ e2 da i di e ¢ b diagonal matrix. An efficient criterion of this kind is

where the face DOFs are numbered last (Fig. 1). The situation is N,

identical in 3-D, where the 28 20 M-matrix is easily derived F(p) = Z 1A; (p) — max A;(p)| (13)

if the methodology shown in Fig. 1 is applied to each one of the =

four faces. In both cases, the element class depends on nine pa- ]

rameters. Although, without loss of generality, the edge-to-ed§&ich has given the best results so far, but the quest for an even
coefficient in (11) is taken equal to 1, it is very significant thap€tter one is, still, an open problem. _

b can vary, since it controls the relative magnitude of edge and®S for the optimization method, a simple line search algo-
face DOFs (and SFs). We stress that the simultaneous imgiflm can be chosen, since it is applied to the elemental ma-
mentation of the whole class is simple and requires prograffix only. The algorithm searches toward the principal direc-

ming of (5) and (6) only, if numerical integration is used. ~ Ons in the parameter spaody = =e;, ei(j) = é;; and
i, 7 = 1,...,9. From those 18 directions, we chose the one
B. The Optimization Scheme that minimizes the object function. Hence, the algorithm, with

The key issue now is how to determine the transformation th%Qaptlve step, is outlined as follows

provides optimal convergence. Optimization for the entire ma- n=0,p"=[010000000]" 5= &0
trix would require enormous computational times. Instead, we ’ ’
establish a scheme, based on a criterion for the element maitgj,

A. Itis difficult, though, to prove in mathematical terms, which

criterion for the element matrix minimizes the number of itera- A’ = (M(p™)")TAM(p™) !

tions for the assembled system. We experimented with various g, — argmin{F(p"™ + &d,)}, i=1
criteria, but only few were successful. The condition number ., 6d7 7 1
criterion fails, possibly due to the presence of negative eigen- p =P+ ody, n=nt

values. A much better one is proven to be diegonality crite- ¢

rion, where the object function is

18

PRI

Ny p™t —p T /Ip" T < e
/
L M ,_;#‘ la:;(p)| thené = 48 while
F(p)=— Z J=hFr (12)

Ny = lag(p)| p"* —p"|/[p"| > e
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10° ‘ ‘ TABLE |
—+— Reference element NUMBER OF I TERATIONS FORCONVERGENCE(3-D PROBLEM)
—— Diagonality criterion
—— Eigenvalue criterion Total Ow Ref. Diag. Eigenvalue  Universal
-------- Universal parameters DOFs element  Criterion Criterion Parms
| . 1830 0.55 1345 486(36%)  438(33%) 411(31%)
2328 0.73 848 307(36%)  283(33%)  251(30%)
§ LR | A 1 13380 0.55 2613 982(38%) 717(27%)  747(29%)
o 4‘ 17508 0.73 1822  849(47%)  477(26%)  450(25%)
2 L L 43770 055 3948  1395(35%) 1065(27%) 1071(27%)
2 “a*u : 1 57852 0.73 2627  1263(48%) 707(27%)  678(26%)
o ‘“ ; i | 102120 055 5236 1855(35%) 1402(27%) 1402(27%)
SRR
i T l | 3l E
£ ' A
10%L ; ‘ul W7 .z‘.! L | c = —0494, di = —0.350, do = 0.509, ¢; = —0.081,
¢ [ ’ ey = —0.075, fi = 0.527, f, = —0.350. Since this set is ob-
107 B ‘ ‘ ‘ LT tained from a typical element, it is not expected to significantly
0 1000 2000 3000 4000 5000 depend on the problem’s geometry. However, it is a matter of
Iterations further investigation if it is truly universal.

In all cases, the solution generated by different elements is
18entical, as predicted by (7). However, we observe a striking
reduction of iterations, reaching a 25% of those for (1), (2).
Surprisingly, the universal parameters give, sometimes, slightly
better results. According to [7], the most efficient elements [2],
The if-condition is used to reduce stéjin the frequent case of [7] require about half of the iterations of (1), (2), which makes
stagnation. Typical values afé = 0.01+0.1 andy, = 0.5=0.9. the proposed element the best one.

For larger starting steps, the algorithm can be trapped to badly
conditioned solutions.

Fig. 2. Comparison of convergence rates for a 2-D problem with 228
degrees of freedom. The universal parametersuare 0.298, b = 2.019,
c=—0.282,dy =0.4,d> = —0.526,e1 = 0.1,e2 = 0.002, f; = 0.225,
fa = —0.601.

IV. CONCLUSION

We have introduced a wide class of second-order triangular
and tetrahedral Whitney elements and an optimization scheme,

A 2-D and a 3-D application are considered and a precondgiesulting in a remarkable improvement of convergence speed.
tioned conjugate gradient method is used to solve the systeithough the parameters derived, can be widely used, we sug-
We have chosen a diagonal preconditioning, i.e., the precongést the use of the optimization procedure, which is not only
tioner is the system matrix itself. This is a logical choice, sincgasy but also locates the best parameters in a few seconds. Apart
it requires no extra memory, while it is not guaranteed that othisem that, this study should be conceived as a general theory that
schemes like ICCG or controlled fill-in preconditioners respongrovides an improvement to one of the most adverse issues in
very well to matrices generated from Whitney elements. In amgctor FEM modeling and could be applied to other elements,

I1l. NUMERICAL RESULTS

case, we are interested in comparing the iterations required framwell.

a specific method, due to the improvement of the system’s con-
ditioning. The number of iterations for convergence to a rela-
tive error of 1077 is investigated. In 2-D, the scattering from a [1]
dielectric cylinder is considered, via a frequency-domain E-for-
mulation and an unsplit diagonally anisotropic PML. The fre-
quency-domain 3-D application deals with a waveguide termi-
nation, backed by a dielectric or ferrite material. The optimiza-
tions are performed according to the most characteristic elel3]
ment, preferably that of worst quality factor, where the latter
one is defined as three times the ratio of radii of the inscribed
and the circumscribed sphere, respectively. In both cases, a sét!
of universal parameters has been extracted from a large-scale
problem, with elements of various quality factors. These sets[s]
are given for anyone that prefers to skip the optimization and
are expected to work well in all cases. In Fig. 2, comparisons argg)
performed in 2-D, whereas a comparison of different criteria for
the 3-D case is given in Table I, for different problem sizes and
average quality factor@,.,. The set of universal parameters, ex-
tracted from the largest problem in 3-Duis= 0.367, b = 2.857,

(7]
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