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Convergence-Optimized, Higher Order Vector Finite
Elements for Microwave Simulations

Traianos V. Yioultsis and Theodoros D. Tsiboukis, Senior Member, IEEE

Abstract—We introduce a general class of higher order param-
eter-dependent Whitney elements, unlike previous approaches that
resulted in specific element definitions. All elements of this kind
provide the same solution, but their convergence properties may be
significantly different. The most essential fact, though, is the intro-
duction of an optimization procedure, which reveals the existence
of an optimal, with respect to convergence, element. The produced
second order elements are tested in both two-dimensional (2-D)and
three-dimensional (3-D) microwave simulations.

Index Terms—Finite-element methods, modeling, waveguide
components.

I. INTRODUCTION

T HE FINITE-element method (FEM) is a valuable tool
in computational electromagnetics and especially in

microwave analysis and design. However, most simulations of
this kind are still based on the well-known edge element [1],
although higher orders are highly desirable for better accuracy.
Generalizations of this kind do exist, [2]–[7] and actually form
the basis of some widely used commercial packages. However,
thanks to a recent comparative study of several second-order
elements [7], it is clear that they exhibit significant differences,
with respect to the convergence of the iterative method used to
solve the global finite element matrix equation. In particular,
the element [3] has slow convergence, compared to [2] and [7].
What we introduced in [3], though, was actually a systematic
approach to construct an infinite variety of second and third
order Whitney elements. We also implied that these could be
related to each other by an affine transformation. In this study,
we formulate the most general transformation of degrees of
freedom (DOF) and shape functions (SF), thus defining an
element class, depending on nine parameters. By a proper
optimization scheme, based on the elemental matrix and being,
therefore, efficient and easy to implement, we managed to
trace the optimal parameters, resulting in less than 30% of the
iterations for the reference element [3]. This is demonstrated
in both two dimensional (2-D) and three-dimensional (3-D)
simulations.
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II. GENERAL CLASS OFWHITNEY ELEMENTS

A. Basic Element and the Affine Transformation

The formation of the wide class of second-order Whitney el-
ements starts from the basic one, derived by a justified choice
of DOFs [3]. On each edge , the two DOFs are

(1)

while two additional DOFs are defined on each face

(2)

This choice is not unique, although the kernels should follow the
same patterns. A systematic procedure, based on a decoupling
property and the correct geometric representation of the discrete
de Rham sequence results in the following SF expressions

(3)

(4)

for edge and face DOFs, respectively, both in 2-D and 3-D.
The essential concept here is to define an as general as pos-

sible transformation of SFs, resulting in optimal convergence.
Since it is unlikely to find this by heuristic trials, we pursue a
systematic analysis by introducing transformations of DOFs and
SFs,

(5), (6)

respectively, where is the column vector of DOFs for a single
element, the transformed one, the column vector of vector
SFs and the new basis. Moreover, and are 8 8 in
2-D or 20 20 in 3-D matrices, which are related to each other,
since the field expression is, in column vector form,

(7)

and given that the transformation should not affect the numerical
solution, it naturally comes out that

or (8)

The most interesting observation, though, is how the trans-
formation affects the system matrices. To find this, we express
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the transformed T-matrix in the rather unusual column vector
product of the form

(9)
and apply (6), which results in

(10)

The same relation holds for the S-matrix. The question is what
prevents a so general transformation that could even nearly di-
agonalize the matrix. The answer lies in the allocation of DOFs
and the tangential continuity property, dictating that (5) should
associate a DOF with thosedefined only on the same simplex
or its own subsimplices. This means that (5) should link edge
DOFs with those on the same edge only, or a face DOF with all
face and edge DOFs of the same face. Hence, further links are
not possible.

Therefore, in 2-D, we introduce an M-matrix of the form
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(11)

where the face DOFs are numbered last (Fig. 1). The situation is
identical in 3-D, where the 20 20 M-matrix is easily derived
if the methodology shown in Fig. 1 is applied to each one of the
four faces. In both cases, the element class depends on nine pa-
rameters. Although, without loss of generality, the edge-to-edge
coefficient in (11) is taken equal to 1, it is very significant that
b can vary, since it controls the relative magnitude of edge and
face DOFs (and SFs). We stress that the simultaneous imple-
mentation of the whole class is simple and requires program-
ming of (5) and (6) only, if numerical integration is used.

B. The Optimization Scheme

The key issue now is how to determine the transformation that
provides optimal convergence. Optimization for the entire ma-
trix would require enormous computational times. Instead, we
establish a scheme, based on a criterion for the element matrix,
A. It is difficult, though, to prove in mathematical terms, which
criterion for the element matrix minimizes the number of itera-
tions for the assembled system. We experimented with various
criteria, but only few were successful. The condition number
criterion fails, possibly due to the presence of negative eigen-
values. A much better one is proven to be thediagonality crite-
rion, where the object function is

(12)

Fig. 1. Links among the transformed and the original DOFs in a 2-D or a face
of a 3-D second order Whitney element [shown for DOFs (1) and (7) only].

where

is the parameter vector, the entries of the transformed
A-matrix, and the number of degrees of freedom for a
single element. If (12) is minimized, the nondiagonal entries for
each row will be as low as possible, compared to the diagonal
element.

The best results, though, are obtained by introducing a crite-
rion, based on the eigenvalues of the
transformed A-matrix. Indeed, if we enforce that they are as
close to each other as possible, the matrix will be closer to a
diagonal matrix. An efficient criterion of this kind is

(13)

which has given the best results so far, but the quest for an even
better one is, still, an open problem.

As for the optimization method, a simple line search algo-
rithm can be chosen, since it is applied to the elemental ma-
trix only. The algorithm searches toward the principal direc-
tions in the parameter space, , and

. From those 18 directions, we chose the one
that minimizes the object function. Hence, the algorithm, with
adaptive step, is outlined as follows

do

if

then while
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Fig. 2. Comparison of convergence rates for a 2-D problem with 22 848
degrees of freedom. The universal parameters area = 0:298, b = 2:019,
c = �0:282, d = 0:4, d = �0:526, e = 0:1, e = 0:002, f = 0:225,
f = �0:601.

The if-condition is used to reduce stepin the frequent case of
stagnation. Typical values are and .
For larger starting steps, the algorithm can be trapped to badly
conditioned solutions.

III. N UMERICAL RESULTS

A 2-D and a 3-D application are considered and a precondi-
tioned conjugate gradient method is used to solve the system.
We have chosen a diagonal preconditioning, i.e., the precondi-
tioner is the system matrix itself. This is a logical choice, since
it requires no extra memory, while it is not guaranteed that other
schemes like ICCG or controlled fill-in preconditioners respond
very well to matrices generated from Whitney elements. In any
case, we are interested in comparing the iterations required from
a specific method, due to the improvement of the system’s con-
ditioning. The number of iterations for convergence to a rela-
tive error of 10 is investigated. In 2-D, the scattering from a
dielectric cylinder is considered, via a frequency-domain E-for-
mulation and an unsplit diagonally anisotropic PML. The fre-
quency-domain 3-D application deals with a waveguide termi-
nation, backed by a dielectric or ferrite material. The optimiza-
tions are performed according to the most characteristic ele-
ment, preferably that of worst quality factor, where the latter
one is defined as three times the ratio of radii of the inscribed
and the circumscribed sphere, respectively. In both cases, a set
of universal parameters has been extracted from a large-scale
problem, with elements of various quality factors. These sets
are given for anyone that prefers to skip the optimization and
are expected to work well in all cases. In Fig. 2, comparisons are
performed in 2-D, whereas a comparison of different criteria for
the 3-D case is given in Table I, for different problem sizes and
average quality factors . The set of universal parameters, ex-
tracted from the largest problem in 3-D is , ,

TABLE I
NUMBER OF ITERATIONS FORCONVERGENCE(3-D PROBLEM)

, , , ,
, , . Since this set is ob-

tained from a typical element, it is not expected to significantly
depend on the problem’s geometry. However, it is a matter of
further investigation if it is truly universal.

In all cases, the solution generated by different elements is
identical, as predicted by (7). However, we observe a striking
reduction of iterations, reaching a 25% of those for (1), (2).
Surprisingly, the universal parameters give, sometimes, slightly
better results. According to [7], the most efficient elements [2],
[7] require about half of the iterations of (1), (2), which makes
the proposed element the best one.

IV. CONCLUSION

We have introduced a wide class of second-order triangular
and tetrahedral Whitney elements and an optimization scheme,
resulting in a remarkable improvement of convergence speed.
Although the parameters derived, can be widely used, we sug-
gest the use of the optimization procedure, which is not only
easy but also locates the best parameters in a few seconds. Apart
from that, this study should be conceived as a general theory that
provides an improvement to one of the most adverse issues in
vector FEM modeling and could be applied to other elements,
as well.
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